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[. INTRODUCTION

The objective of the High-Progressivity/Density (HPD) Propelling
Charge Concepts Program is to investigate the fecasibility of achieving
significant increases in muzzle velocity, for a given maximum pressure,
over that achieved Ly conventional systems now being used. Moreover, this
performance increase 1s to be obtained wusing existing propellant
formulations and without invoking nonconventional ballistic concepts such
as traveling charge or light gas guns.

The velocity achieved by a particular projectile as it exits the
muzzle of a gun is principally the result of the pressure history acting on
its base while it travels down the bore of the tube. The maximum prassure
value allowable 1is usually dictated by gun tube design, but the actual
pressure profile, apart from this maximum value, exerted on the projectile
base is a result of the competition between the quantity of gas produced by
the burning propellant and the amount of free volume available. At the
beginning of the event, the projectile is not moving or is moving only very
slowly, so the pressure rises rapidly as the propellant burns. However, as
the projectile speeds up, it eventually creates additional volume much
faster than gases are created to fill it. As a result, in virtuslly all
cases, the pressure falls off much more rapidly than desired.

Past attempts to counter this problem have most often involved the use
of propellant configurations exhibiting a continuous increase in burning
surface as a function of distance burned (e.g., 7-, 19-, or even 37-
rerforated grains). Less conventional approaches have included
consolidated propellant charges (i.e., one or more compacted aggregates of
individual propellant grains), offering an increase in total available
energy and the potential for an additional increase in burning surface
during the ballistic event as the aggregate deconsolidates. However,
programmability and reproducibility of the deconsolidation event have
presented serious challenges to the charge designer.

Concepts being considered under the HPD Program include prograwmed-
splitting, perforation-augmented burning, erosive-augmented burning,
pressure-supported perforation—augmented burning, monolithic charges,
programmed ignition, multiple granulations, and multi-layered propellants.

The approach to be presented in this report is based on a concept by
which the increase i{n surface area can be programmed to commence at any
particular point in the burning process, rather than being operative as
soon as the propellant is 1ignited. Thus, a very high loading density
charge can be employed without excessive burning surface  and
overpressurization of the gun early in the ballistic cycle. Second, this
increase {in surface area 1s, conceptually at least, unlimited. Thus,
despite a desirably low {nitial burning surface, the programmed increase in
burning surface after peak pressure can assure total burning of the charge
before the projectile cxits the gun, meeting the second major requirement
for the use of very high loading density charges. This councept, applicable
to a4 number of propellant configurations, has been explofted first as
programmed-splitting stick propellant, and progress te date will be
reported.,
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II. THEORETICAL

Many gun systems utilize 7-perforated granular propellant as the main
propellant charge. If the same charge weight as used in the 7-perforated
charge is assumed to burn such that the maximum velocity is obtained (a
constant pressure calculation), a velocity increase of only about 5% over
that of an optimized 7-perforated charge is predicted. Therefore, not only
a near-optimum burning surface profile (i.e., extremely progressive) but
also more total energy (i.e., greater charge weight) is required in order
to achieve greater increases in velocity.

Particularly attractive in respect to both of these requirements 1is
the programmed-splitting propellant concept, which effectively decouples
the burning surface after peak pressure from thac preceding it. This
concept provides for a discontinuous increase in burning surface at any
desired regression distance, at which point the burning surface reaches an
embedded array of slits and the flame envelopes the additional surface
area. A programmed-splitting stick (see Figure 1) was selected for initial
study because it seemed to be manufacturable with current extrusion
technology, to offer a very high loading density, and to provide the fault-
tolerant, ignition benefits of a stick propellant configuration. The same
concept can be applied to =iab or scroll propellant configurations, but
manufacturing problems were felt to be greater. Any of these
configurations, of course, requires that the ends or edges where the slits
are initially exposed be adequately inhibited to prevent the flame from
prematurely reaching the slits. NOSOL 363 propellant (lot RAD-1-2-73) was
chosen for this initial effort because it is extruded without solvents and
potential problems with drying would be reduced; in addition, the sheet
stock was readily available.

The programmed-splitting stick propellant configuration was modeled as
a cord until the slits were reached and then as long pie-shaped wedges.
The slits were assumed initfally to occupy no volume. The optimization
process involved first determining the proper cord geometry to achieve the
desired maximum pressure and then defining the slit parameters (number and
dimension) to raise the pressure to this same value once again, as shown in
Figure 2. Clearly, a multiplicity of such grain configurations could be
employed to achieve an even greater number of peaks, approaching the
optimal flat pressure-time curve, However, even the single, basic
configuration with three or four slits of the samne dimension (yielding six
or efeht ple-shaped wedges) was calculated to provide the desired increase
in performance for the !55-mm howitzer.

I1I. MANUFACTURING EXPERIENCE

A die and stake, shown in Figure 3, were designed and fabricated for
manufacturing programmed-splitting stick propellant of the calculated,
nominal dimensions for the 155-mm howitzer. The stake was made by
suldering four half-vaaes (o one whole vane, all 0.25%% mm thick, making a
three-vane stake. The vanes were then soldered into a base which fit {into
the die. Both cord propellant and programmed-splitting stick propellant
were extruded for closed bomb firings. The cord propellant was made by



Figure 1. Programmed-Splitting Stick Propellant
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Figure 2. Calculated Pressure-Time Profile for Programmed-
Splitting Stick Propellant
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END VIEW OF ASSEMBLY

Figure 3. Die Design for Programmed-Splitting
Stick Propellant

removing the stake and extruding through the same die. Both configurations
expanded after extrusion, with the programmed-splitting stick expanding by
3% and the solid cord expanding 5.6% on the outside diameter.

Initial extrusions were successful in that the slits remained blind,
never breaking through to the cuter lateral surfaces, despite the small
webs. The overall average web was 0.686 mm, but, as the vanes, once
assembled to the base, were nui all of the same dimension, a smaller-web
region resulted where the average was 0.546 mm and the minimum was 0.483
mm, The discrepancies between the diameters associated with the die vanes
and those with the resulting propellant slits varied, with the largest?
deviations associated with the largest vanes. Moreover, the slits in the
propellant, rather than having no volume, exhibited approximately the same
width as the vanes. This resulted in an 1internal void volume of
approximately 10%¥. It was also noted that the edges near the center of the
grains had small irregularities eimilar to the edge of a saw blade. Table
summarizes all pertinent dimensions.

After the first two-pound extrusion of NOS0L 363, the vanes were found
to be loose and were resoldered. Subsequently, while attempting to extrude
a sample of JA2 propellant sheet stock, the stake separated from the
bace. New stakes have been machined from one piece of metal but, as of the
time of this writing, have yet to be tried. The procedure for defining the
new stake and die dimensions was to assume that the slit diameter would
remain the same as the vane diameter and thaat an expanston of 31 would
vccur in the propellant web. Further, the tips and the edges of the vanes
were filed to a sharp edge {n an attem,t to reduce slit width.
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test
grains.
to @valuate the end seals.

propellant {s

TABLE I. SUMMARY O° DIE AND PROPELLANT DIMENS IONS
PROGRAMMED)
DI AND DE AND | .spuiTiNG | SOLID CORD
STAKE STAKE GRAIN GRAIN
(FROM DRAWING)| (MEASURED) | (MEASURED) | (MEASURED)
mn [ ] mm Min
(MIN) (MAX) | i) (RAX)
DIAM {X) 589 .99 Eo1 6.22
599 %17 | 6.20) 6.24)
457
SLOT DIAM (V1) 410 455 | esa sy
410
2 a1 .18
= 0 [0.47)  (4.98)
5.06
’ 483
& 470 (4.90) (5:21)
AVERAGE 410 an .18
SLOT WioTH @) 0.254 0.254 0.254
wis (W) 0.5%4* 0.585 * 0.686
(0.483)(0.914)
* CALCULATED
IV. EXPERIMENTAL RESULTS

Closed bomb firings were conducted in an attempt to determine whether
the programmed-splitting propellant burns as mathematically modeled and to
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Since the closed bomb data reduction program does not include a form
function tn describe proyrammed-splitting configurations, the analysis was
performed assuming the grain to be a solid cord, yielding an apparent
burning rate, However, by assuming the burning rates ohtained for the
sample of actual cord propellant to be applicable to the programmed-
splitting grains as well, we were able to deduce burning surface profiles
from the mass-generation rate data, revealing more directly the behavior of
the programmed-splitting event. Theoretically, the apparent burning rate
curves should have resembled Figure 4 and the surface area profiles should
have looked like Figure 5.

A problem was encountered in the reduction of closed bomb data because
of the internal voidage associated with the blind slits. There were 21
grains used in each firing, but the computer program calculated (from the
density, mass of propellant, and grain dimensions) that there were
approximately 19 grains. This led to apparent burning rates and surface
areas which were higher at all points than theoretically expected; however,
it should not have changed the shape of the curves.
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Figure 4. Theoretical Apparent Burning Rate Profile for
Progranmed- Splitting Stick Propellant

- AR DI A R I S A S S D e N

R G b £ T T T T L RN ML R N e e
- P - X

»
S el e e e .



g
»
I e

1

g
=
L

L

(Y

.

(-]
1

NORMALIZED BURNING SURFACE
[
N

0 T T T T 2 5 Y T Y T ——

0 0.2 04 0.6 0s 1.0
FRACTION BURNED

Figure 5. Theoretical Surface Profile for Programmed-
Splitting Stick Propellant

Another problem with the reduction technique which could have changed
the shape of the curves was the smoothing technique applied to the
pressure-time output from the closed bomb firings. Such procedures tend to
smcoth out any abrupt changes, such as that expected with a discontinuous
increase in surface area. To probe this concern, a computer-generated
pressure~time curve (generated using a true, programmed-splitting form
function) was smoothed in the same manner as the real output from a closed
bomb firing. Indeed, the expected, abrupt changes in the reduced data were
rounded but not to a degree that would prevent recognition of the splitting
event.

The burning rates for the cord, shown i{n Figure 6, and for the single-
perforated granulations were consistent and also agreed well with previous
NOSOL 363 closed bomb data. These burnine rates were therefore used as the
baseline and for the reduction of all burning surface profiles.
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Figure 6. Burning Rates for Solid Strands of NOSOL 363 Propellant

The apparent burning rates for the open-ended, programmed-splitting
configuration (reduced as a cord) showed considerable variability in the 7-
35 MPa pressure range and, as expected, manifested about a 3-fold increase
over the burning rates of the cord for the entire pressure range (see
Figure 7). The accompanying burning surface profiles are provided in
Figure 8. Figure 9 displays the apparent burning rates for the sample with
asphalt-covered ends. Figure 10 presents the apparent burning rates for
the sample whose ends had been sclvated in acetone to close the slits, and
Figure 11 shows the correspcnding surface profiles. A comparison of the
averaged values of the burning rates for the cord and the appsrent burning
rates for the three programmed-splitting samples is shown in Figure 12.

Other attempts at closing off the ends of the blind slits in the
programmed-splitting propellant samples, such as the use of aluminum end
caps and NOSOL 363 discs as mentioned earlier, were no more effective than
just solvating the ends with acetone. The discussicn will therefore be
centered around the configuration with acetone-solvated ends.

srains with acetone-solvated ends similar to those used in the closed
bomb studies were also pressurized slowly in an oil bath, in 70-MPa
increments, to over SO0 MPa. The samples were 1inspected after each
increment of pressurization. One out of the ten pressurized had oil fn the
voidage after the first 70 MPa; the rest all remained intact with no oil in
the voidage over the entire pressure ranye.
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Figure 7. Apparent Buring Rates for Programmed-Splitting Stick
Propellant with Open Ends
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Figure 8. Burning Surface Prefiles for Prograomed-Splitting
Stick Propellant with Open Ends
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Figure 9. Apparent Burning Rates for Programmed-Splitting
Stick Propellant with Asphalt-Covered Ends
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Figure 0. Apparent Burning Rates for Programmed-Splitcirg
Stick Propellant with Acetone-Solvated Ends
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THEORETICAL
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Figure 11, Burning Surface Profiles for Programmed-Splitting
Stick Propellant with Acetone-Solvated Ends
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Figure 12. Averaged Apparent Burning Rates

17

LR P A PP R PR PR SR R T I R S TAE AR L IR IR R SR R R - R U S
AL NI CAN 0N A A S SO RO A NI R A AU LA A A T O R R DL LU R

NI NN

A




V. DISCUSSION

Successful application of the programmed-splitting stick propellant
concept in the gun environment requires that the discontinuous increase in
surface area must occur only after maximum pressure has occurred. This, in
turn, requires that the flame not reach the blind slits prematurely (i.e.,
by any means except the planned burn—-through of the web). The flame must
be prevented from entering the ends of the grains and the grain must not
break, opening a path to the blind slits. Therefore, most of the
discussion will address this aspect of the problem.

From Figure 12, it would appear that the asphalt covering did not
prevent the flame from getting to the slits since the apparent burning
rates for that sample are higher in the low pressure region than for the
cords or the sample with acetone-solvated ends. The asphalt seems,
however, to have acted as an inhibitor on the ends themselves, since the
apparent burning rates are not as high as for the open—~ended grains.
Further, no progressivity is revealed, as the curves for the samples with
asphalt—-covered and open ends are nearly parallel to that for the cord
propellant.

Figure 12 shows a small increase in the apparent burning rates &t
low pressures for the samples with acetone-solvated ends. This is -«,
however, totally unexpected since the reduction procedure will, becaus it
| ignores the presence of voldage in the slit region, underestimate the t .~al
number of grains (and accompanying initial surface) and thereiore
overestimate the apparent burning rates by about 10%. We further expect to
‘ see the apparent burning rates increasing faster than for the cord
propellant and the curve then becoming parallel to that for the open-ended
grains., What {s surprising is that the burning rate curve should start to
rise at such a low pressure (50 MPa) and continue to exhibit progressivity
long after expected web burn-tlirough at about 125 MPa!

We next call attention to the burning surface profile for this same
sample with acetone-solvated ends, shown 1{in Figure 11 along with a

theoretical profile for the programmed-splitting grain. The surface
profile seems to be a much beititer discriminator for the processes of
interest to us here. Again we see an early increase around 50 MPa,

followed by incremental f{ncreases until the curve approaches the
theoretical curve at a point long after web burn-through should have
occurred.

There are three effects which could have been responsible for the
unexpected, early rise in the apparent burning rates and the burning
surface profije. They are data-smoothing during the reduction procedure
(mentioned earlier), variations in the web, and early exposure of some
portion of the blind slits. In order to study each of these possibilites,

| calculations wrre made with a computer code to simulate the programmed-
| splitting configuraiion burning in a closed bomb., The form function was
programmed to assume burning on lateral and end surfaces until web burn-
through and then on the remaining lomr, ple-shaped wedges. It was also
assumed that the slits occupied no volume. The resultant pressure-time
curve served as {nput to the existing closed bomb data reduction program,
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and apparent burning rates and surface areas were calculated using minimal
smoothing (no smoothing on the pressure-~time curve and a 5-point smoothiny
bridge to obtain dp/dt) and then with the normal smoothing procedure (3 25-
point smoothing bridge on the pressure-time curve and a l5-pcint bridge to
obtain dp/dt). The apparent burning rate curves are shown in Figure 13,
and the surface area ratio curves are displayed in Figure 14. It is
apparent that smoothing was not recponsible for the unexpected closed bomb
results.

Other synthetic runs were performed to investigate the possihility of
the web variation being large enough to account for this effect. A rua was
made with 1/3 of the charge weight having a web equal to the smallest
measured web (0.483 mm) and the rest of the charge having the average of
the smallest web (0.546 mm). An 1increase 1in surface area was then
indicated at approximately twice the mass fraction burned (which translates
also into twice the closed bomb pressure) as that where the observed,
apparent burning rate curve started to rise. Even in combination with
smoothing effects, this did not provide an explanation for observed
behavior.

A third series of synthetic runs was made with 1/3 of the charge
configured such rhat burn-through of the web occurred at 50 MPa and the
remaining porti. having a web of 0.546 mm (the average of the smallest
web). These conditions, of course, reproduced the observed, early increase
in the burning surface, but they also delayed burn-through of the 0.546-mm
web until a pressure which was some 35 MPa higher than the value where
burn-through for a 0.545-mm web would have taken place. This result
approximated what we saw in the sgurface profiles for the samples with
acetone-solvated ends, and, along with the static test results indicating
grain survivability at high pressures, 1s consistent with an explanation
for the observed clcsed bomb results based on early flame penecraciun into
a significant portion but not a majority of the blind slits.

Many other problem areas remain to be 1investigated, including the
effects of aging on any successful end-closure techniques, sensitivity of
performance to web variations, the influence of propellant mechanical
properties, and temperature effects. At the same time, alternative HPD
concepts warrant consideration in the near future.
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Figure 13.

Figure l4.
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CONCLUSIONS

Substantial perforuance gains are theoretically possible from rather
straight-forward IIPD propulsion concepts wusing existing propellant
technology.

The feasibility of manufacturing a programmed-splitting stick
propellant has been demonstrated using existing extrusion technology.

Techniques for sealing the ends «¢f programmed-splitting stick
propellant have been partially demonstrated, offering significant hope for
demonstrating this HPD concept in the gun environment within the coming
year.
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